10k

设计模式之美-课程笔记16-设计原则实战2-接口调用信息统计框架

针对非业务的通用框架开发,如何做需求分析和设计?

项目背景

我们希望设计开发一个小的框架,能够获取接口调用的各种统计信息,比如,响应时间的最大值(max)、最小值(min)、平均值(avg)、百分位值(percentile)、接口调用次数(count)、频率(tps) 等,并且支持将统计结果以各种显示格式(比如:JSON 格式、网页格式、自定义显示格式等)输出到各种终端(Console 命令行、HTTP 网页、Email、日志文件、自定义输出终端等),以方便查看。

需求分析

作为可被复用的框架,除了功能需求,非功能需求也很重要。

1. 功能性需求分析

接口统计信息:包括接口响应时间的统计信息,以及接口调用次数的统计信息等。

统计信息的类型:max、min、avg、percentile、count、tps 等。

统计信息显示格式:Json、Html、自定义显示格式。

统计信息显示终端:Console、Email、HTTP 网页、日志、自定义显示终端。

除了罗列这些, 还可以通过线框图,把最终数据的显示样式画出来,会更加一目了然。

img

实际上,从线框图我们还能挖掘出下面几个隐藏需求。

统计触发方式:主动和被动。

统计时间区间:可以自定义

统计时间间隔

2. 非功能性需求分析

  • 易用性:是否跟业务热插拔,解耦。
  • 性能:这部分代码不影响接口本身,堆内存消耗也不大。
  • 扩展性:从框架使用者的角度来说的,特指使用者可以在不修改框架源码,甚至不拿到框架源码的情况下,为框架扩展新的功能。这就有点类似给框架开发插件
    • feign 是一个 HTTP 客户端框架,我们可以在不修改框架源码的情况下,用如下方式来扩展我们自己的编解码方式、日志、拦截器等。通过继承和重写:
Feign feign = Feign.builder()
        .logger(new CustomizedLogger())
        .encoder(new FormEncoder(new JacksonEncoder()))
        .decoder(new JacksonDecoder())
        .errorDecoder(new ResponseErrorDecoder())
        .requestInterceptor(new RequestHeadersInterceptor()).build();

public class RequestHeadersInterceptor implements RequestInterceptor {  
  @Override
  public void apply(RequestTemplate template) {
    template.header("appId", "...");
    template.header("version", "...");
    template.header("timestamp", "...");
    template.header("token", "...");
    template.header("idempotent-token", "...");
    template.header("sequence-id", "...");
}

public class CustomizedLogger extends feign.Logger {
  //...
}

public class ResponseErrorDecoder implements ErrorDecoder {
  @Override
  public Exception decode(String methodKey, Response response) {
    //...
  }
}
  • 容错性: 框架可能存在的各种异常情况都考虑全面,对外暴露的接口抛出的所有运行时、非运行时异常都进行捕获处理。
  • 通用性:提高复用性,应对尽可能多的场景。

框架设计

  1. 借鉴TDD或者最小原型原则,先聚焦一个最基本的小场景开发。这有助于我们缕清思路,是可持续迭代的基础。
  2. 比如对于性能计数器,我们可以先加上对用户注册和登录两个接口的响应时间的max,avg,调用次数统计,并且将统计结果用JSON的格式输出到命令行中。
//应用场景:统计下面两个接口(注册和登录)的响应时间和访问次数
public class UserController {
  public void register(UserVo user) {
    //...
  }
  
  public UserVo login(String telephone, String password) {
    //...
  }
}
public class Metrics {
  // Map的key是接口名称,value对应接口请求的响应时间或时间戳;
  private Map<String, List<Double>> responseTimes = new HashMap<>();
  private Map<String, List<Double>> timestamps = new HashMap<>();
  private ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();

  public void recordResponseTime(String apiName, double responseTime) {
    responseTimes.putIfAbsent(apiName, new ArrayList<>());
    responseTimes.get(apiName).add(responseTime);
  }

  public void recordTimestamp(String apiName, double timestamp) {
    timestamps.putIfAbsent(apiName, new ArrayList<>());
    timestamps.get(apiName).add(timestamp);
  }

  public void startRepeatedReport(long period, TimeUnit unit){
    executor.scheduleAtFixedRate(new Runnable() {
      @Override
      public void run() {
        Gson gson = new Gson();
        Map<String, Map<String, Double>> stats = new HashMap<>();
        for (Map.Entry<String, List<Double>> entry : responseTimes.entrySet()) {
          String apiName = entry.getKey();
          List<Double> apiRespTimes = entry.getValue();
          stats.putIfAbsent(apiName, new HashMap<>());
          stats.get(apiName).put("max", max(apiRespTimes));
          stats.get(apiName).put("avg", avg(apiRespTimes));
        }
  
        for (Map.Entry<String, List<Double>> entry : timestamps.entrySet()) {
          String apiName = entry.getKey();
          List<Double> apiTimestamps = entry.getValue();
          stats.putIfAbsent(apiName, new HashMap<>());
          stats.get(apiName).put("count", (double)apiTimestamps.size());
        }
        System.out.println(gson.toJson(stats));
      }
    }, 0, period, unit);
  }

  private double max(List<Double> dataset) {//省略代码实现}
  private double avg(List<Double> dataset) {//省略代码实现}
}

具体调用:

//应用场景:统计下面两个接口(注册和登录)的响应时间和访问次数
public class UserController {
  private Metrics metrics = new Metrics();
  
  public UserController() {
    metrics.startRepeatedReport(60, TimeUnit.SECONDS);
  }

  public void register(UserVo user) {
    long startTimestamp = System.currentTimeMillis();
    metrics.recordTimestamp("regsiter", startTimestamp);
    //...
    long respTime = System.currentTimeMillis() - startTimestamp;
    metrics.recordResponseTime("register", respTime);
  }

  public UserVo login(String telephone, String password) {
    long startTimestamp = System.currentTimeMillis();
    metrics.recordTimestamp("login", startTimestamp);
    //...
    long respTime = System.currentTimeMillis() - startTimestamp;
    metrics.recordResponseTime("login", respTime);
  }
}

所以我们大概知道这个业务的系统设计模型:

img

所以我们将框架分成:数据采集,存储、聚合统计和显示四个模块。

逐步迭代

先去实现基本功能和思路。再去逐步迭代更优版本。

面向对象设计和实现

1. 划分职责进而识别有哪些类

  • MetricsCollector 类负责提供 API,来采集接口请求的原始数据。我们可以为 MetricsCollector 抽象出一个接口,但这并不是必须的,因为暂时我们只能想到一个 MetricsCollector 的实现方式。

  • MetricsStorage 接口负责原始数据存储,RedisMetricsStorage 类实现 MetricsStorage 接口。这样做是为了今后灵活地扩展新的存储方法,比如用 HBase 来存储。

  • Aggregator 类负责根据原始数据计算统计数据。
  • ConsoleReporter 类、EmailReporter 类分别负责以一定频率统计并发送统计数据到命令行和邮件。至于 ConsoleReporter 和 EmailReporter 是否可以抽象出可复用的抽象类,或者抽象出一个公共的接口,我们暂时还不能确定。

2. 定义类的属性以及类与类之间的关系

  1. MetricsCollector 类的定义非常简单,具体代码如下所示。对比上一节课中最小原型的代码,MetricsCollector 通过引入 RequestInfo 类来封装原始数据信息,用一个采集函数代替了之前的两个函数。
public class MetricsCollector {
  private MetricsStorage metricsStorage;//基于接口而非实现编程

  //依赖注入
  public MetricsCollector(MetricsStorage metricsStorage) {
    this.metricsStorage = metricsStorage;
  }

  //用一个函数代替了最小原型中的两个函数
  public void recordRequest(RequestInfo requestInfo) {
    if (requestInfo == null || StringUtils.isBlank(requestInfo.getApiName())) {
      return;
    }
    metricsStorage.saveRequestInfo(requestInfo);
  }
}

public class RequestInfo {
  private String apiName;
  private double responseTime;
  private long timestamp;
  //...省略constructor/getter/setter方法...
}
  1. MetricsStorage 类和 RedisMetricsStorage 类的属性和方法也比较明确。具体的代码实现如下所示。注意,一次性取太长时间区间的数据,可能会导致拉取太多的数据到内存中,有可能会撑爆内存。对于 Java 来说,就有可能会触发 OOM(Out Of Memory)。而且,即便不出现 OOM,内存还够用,但也会因为内存吃紧,导致频繁的 Full GC,进而导致系统接口请求处理变慢,甚至超时。

    可以采用分页请求的方式?或者异步请求。

public interface MetricsStorage {
  void saveRequestInfo(RequestInfo requestInfo);

  List<RequestInfo> getRequestInfos(String apiName, long startTimeInMillis, long endTimeInMillis);

  Map<String, List<RequestInfo>> getRequestInfos(long startTimeInMillis, long endTimeInMillis);
}

public class RedisMetricsStorage implements MetricsStorage {
  //...省略属性和构造函数等...
  @Override
  public void saveRequestInfo(RequestInfo requestInfo) {
    //...
  }

  @Override
  public List<RequestInfo> getRequestInfos(String apiName, long startTimestamp, long endTimestamp) {
    //...
  }

  @Override
  public Map<String, List<RequestInfo>> getRequestInfos(long startTimestamp, long endTimestamp) {
    //...
  }
}
  1. 统计和显示这两个功能,可以有多种设计思路。实际上,如果我们把统计显示所要完成的功能逻辑细分一下的话,主要包含下面 4 点:
    • 根据给定的时间区间,从数据库中拉取数据;
    • 根据原始数据,计算得到统计数据;
    • 将统计数据显示到终端(命令行或邮件);
    • 定时触发以上 3 个过程的执行。
  2. 面向对象设计和实现要做的事情,就是把合适的代码放到合适的类中。
  3. 我们暂时选择把第 1、3、4 逻辑放到 ConsoleReporter 或 EmailReporter 类中,把第 2 个逻辑放到 Aggregator 类中。其中,Aggregator 类负责的逻辑比较简单,我们把它设计成只包含静态方法的工具类
public class Aggregator {
  public static RequestStat aggregate(List<RequestInfo> requestInfos, long durationInMillis) {
    double maxRespTime = Double.MIN_VALUE;
    double minRespTime = Double.MAX_VALUE;
    double avgRespTime = -1;
    double p999RespTime = -1;
    double p99RespTime = -1;
    double sumRespTime = 0;
    long count = 0;
    for (RequestInfo requestInfo : requestInfos) {
      ++count;
      double respTime = requestInfo.getResponseTime();
      if (maxRespTime < respTime) {
        maxRespTime = respTime;
      }
      if (minRespTime > respTime) {
        minRespTime = respTime;
      }
      sumRespTime += respTime;
    }
    if (count != 0) {
      avgRespTime = sumRespTime / count;
    }
    long tps = (long)(count / durationInMillis * 1000);
    Collections.sort(requestInfos, new Comparator<RequestInfo>() {
      @Override
      public int compare(RequestInfo o1, RequestInfo o2) {
        double diff = o1.getResponseTime() - o2.getResponseTime();
        if (diff < 0.0) {
          return -1;
        } else if (diff > 0.0) {
          return 1;
        } else {
          return 0;
        }
      }
    });
    int idx999 = (int)(count * 0.999);
    int idx99 = (int)(count * 0.99);
    if (count != 0) {
      p999RespTime = requestInfos.get(idx999).getResponseTime();
      p99RespTime = requestInfos.get(idx99).getResponseTime();
    }
    RequestStat requestStat = new RequestStat();
    requestStat.setMaxResponseTime(maxRespTime);
    requestStat.setMinResponseTime(minRespTime);
    requestStat.setAvgResponseTime(avgRespTime);
    requestStat.setP999ResponseTime(p999RespTime);
    requestStat.setP99ResponseTime(p99RespTime);
    requestStat.setCount(count);
    requestStat.setTps(tps);
    return requestStat;
  }
}

public class RequestStat {
  private double maxResponseTime;
  private double minResponseTime;
  private double avgResponseTime;
  private double p999ResponseTime;
  private double p99ResponseTime;
  private long count;
  private long tps;
  //...省略getter/setter方法...
}
  1. ConsoleReporter 类相当于一个上帝类,定时根据给定的时间区间,从数据库中取出数据,借助 Aggregator 类完成统计工作,并将统计结果输出到命令行。具体的代码实现如下所示:
public class ConsoleReporter {
  private MetricsStorage metricsStorage;
  private ScheduledExecutorService executor;

  public ConsoleReporter(MetricsStorage metricsStorage) {
    this.metricsStorage = metricsStorage;
    this.executor = Executors.newSingleThreadScheduledExecutor();
  }
  
  // 第4个代码逻辑:定时触发第1、2、3代码逻辑的执行;
  public void startRepeatedReport(long periodInSeconds, long durationInSeconds) {
    executor.scheduleAtFixedRate(new Runnable() {
      @Override
      public void run() {
        // 第1个代码逻辑:根据给定的时间区间,从数据库中拉取数据;
        long durationInMillis = durationInSeconds * 1000;
        long endTimeInMillis = System.currentTimeMillis();
        long startTimeInMillis = endTimeInMillis - durationInMillis;
        Map<String, List<RequestInfo>> requestInfos =
                metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
        Map<String, RequestStat> stats = new HashMap<>();
        for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) {
          String apiName = entry.getKey();
          List<RequestInfo> requestInfosPerApi = entry.getValue();
          // 第2个代码逻辑:根据原始数据,计算得到统计数据;
          RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis);
          stats.put(apiName, requestStat);
        }
        // 第3个代码逻辑:将统计数据显示到终端(命令行或邮件);
        System.out.println("Time Span: [" + startTimeInMillis + ", " + endTimeInMillis + "]");
        Gson gson = new Gson();
        System.out.println(gson.toJson(stats));
      }
    }, 0, periodInSeconds, TimeUnit.SECONDS);
  }
}

public class EmailReporter {
  private static final Long DAY_HOURS_IN_SECONDS = 86400L;

  private MetricsStorage metricsStorage;
  private EmailSender emailSender;
  private List<String> toAddresses = new ArrayList<>();

  public EmailReporter(MetricsStorage metricsStorage) {
    this(metricsStorage, new EmailSender(/*省略参数*/));
  }

  public EmailReporter(MetricsStorage metricsStorage, EmailSender emailSender) {
    this.metricsStorage = metricsStorage;
    this.emailSender = emailSender;
  }

  public void addToAddress(String address) {
    toAddresses.add(address);
  }

  public void startDailyReport() {
    Calendar calendar = Calendar.getInstance();
    calendar.add(Calendar.DATE, 1);
    calendar.set(Calendar.HOUR_OF_DAY, 0);
    calendar.set(Calendar.MINUTE, 0);
    calendar.set(Calendar.SECOND, 0);
    calendar.set(Calendar.MILLISECOND, 0);
    Date firstTime = calendar.getTime();
    Timer timer = new Timer();
    timer.schedule(new TimerTask() {
      @Override
      public void run() {
        long durationInMillis = DAY_HOURS_IN_SECONDS * 1000;
        long endTimeInMillis = System.currentTimeMillis();
        long startTimeInMillis = endTimeInMillis - durationInMillis;
        Map<String, List<RequestInfo>> requestInfos =
                metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
        Map<String, RequestStat> stats = new HashMap<>();
        for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) {
          String apiName = entry.getKey();
          List<RequestInfo> requestInfosPerApi = entry.getValue();
          RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis);
          stats.put(apiName, requestStat);
        }
        // TODO: 格式化为html格式,并且发送邮件
      }
    }, firstTime, DAY_HOURS_IN_SECONDS * 1000);
  }
}

3. 将类组装起来提供执行入口

public class Demo {
  public static void main(String[] args) {
    MetricsStorage storage = new RedisMetricsStorage();
    ConsoleReporter consoleReporter = new ConsoleReporter(storage);
    consoleReporter.startRepeatedReport(60, 60);

    EmailReporter emailReporter = new EmailReporter(storage);
    emailReporter.addToAddress("wangzheng@xzg.com");
    emailReporter.startDailyReport();

    MetricsCollector collector = new MetricsCollector(storage);
    collector.recordRequest(new RequestInfo("register", 123, 10234));
    collector.recordRequest(new RequestInfo("register", 223, 11234));
    collector.recordRequest(new RequestInfo("register", 323, 12334));
    collector.recordRequest(new RequestInfo("login", 23, 12434));
    collector.recordRequest(new RequestInfo("login", 1223, 14234));

    try {
      Thread.sleep(100000);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
  }
}

Review 设计与实现

  • MetricsCollector

    MetricsCollector 负责采集和存储数据,职责相对来说还算比较单一。它基于接口而非实现编程,通过依赖注入的方式来传递 MetricsStorage 对象,可以在不需要修改代码的情况下,灵活地替换不同的存储方式,满足开闭原则。

  • MetricsStorage、RedisMetricsStorage

    MetricsStorage 和 RedisMetricsStorage 的设计比较简单。当我们需要实现新的存储方式的时候,只需要实现 MetricsStorage 接口即可。因为所有用到 MetricsStorage 和 RedisMetricsStorage 的地方,都是基于相同的接口函数来编程的,所以,除了在组装类的地方有所改动(从 RedisMetricsStorage 改为新的存储实现类),其他接口函数调用的地方都不需要改动,满足开闭原则。

  • Aggregator

    Aggregator 类是一个工具类,里面只有一个静态函数,有 50 行左右的代码量,负责各种统计数据的计算。当需要扩展新的统计功能的时候,需要修改 aggregate() 函数代码,并且一旦越来越多的统计功能添加进来之后,这个函数的代码量会持续增加,可读性、可维护性就变差了。所以,从刚刚的分析来看,这个类的设计可能存在职责不够单一、不易扩展等问题,需要在之后的版本中,对其结构做优化。

  • ConsoleReporter、EmailReporter

    ConsoleReporter 和 EmailReporter 中存在代码重复问题。在这两个类中,从数据库中取数据、做统计的逻辑都是相同的,可以抽取出来复用,否则就违反了 DRY 原则。而且整个类负责的事情比较多,职责不是太单一。特别是显示部分的代码,可能会比较复杂(比如 Email 的展示方式),最好是将显示部分的代码逻辑拆分成独立的类。除此之外,因为代码中涉及线程操作,并且调用了 Aggregator 的静态函数,所以代码的可测试性不好。

Thoughts? Leave a comment